A new algorithm for optimal 2-constraint satisfaction and its implications

نویسنده

  • Ryan Williams
چکیده

We present a novel method for exactly solving (in fact, counting solutions to) general constraint satisfaction optimization with at most two variables per constraint (e.g. MAX-2-CSP and MIN-2-CSP), which gives the first exponential improvement over the trivial algorithm. More precisely, the runtime bound is a constant factor improvement in the base of the exponent: the algorithm can count the number of optima in MAX-2-SAT and MAX-CUT instances in O(m2) time, where ω < 2.376 is the matrix product exponent over a ring. When constraints have arbitrary weights, there is a (1+ 2)-approximation with roughly the same runtime, modulo polynomial factors. Our construction shows that improvement in the runtime exponent of either k-clique solution (even when k = 3) or matrix multiplication over GF(2) would improve the runtime exponent for solving 2-CSP optimization. Our approach also yields connections between the complexity of some (polynomial time) high dimensional search problems and some NP-hard problems. For example, if there are sufficiently faster algorithms for computing the diameter of n points in `1, then there is an (2− 2) algorithm for MAX-LIN. These results may be construed as either lower bounds on the high-dimensional problems, or hope that better algorithms exist for the corresponding hard problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Solving Constraint Satisfaction Problems

Many important problems in Artificial Intelligence can be defined as Constraint Satisfaction Problems (CSP). These types of problems are defined by a limited set of variables, each having a limited domain and a number of Constraints on the values of those variables (these problems are also called Consistent Labeling Problems (CLP), in which “Labeling means assigning a value to a variable.) Solu...

متن کامل

A New Method for Solving Constraint Satisfaction Problems

Many important problems in Artificial Intelligence can be defined as Constraint Satisfaction Problems (CSP). These types of problems are defined by a limited set of variables, each having a limited domain and a number of Constraints on the values of those variables (these problems are also called Consistent Labeling Problems (CLP), in which “Labeling" means assigning a value to a variable.) Sol...

متن کامل

An improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling

Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial,...

متن کامل

A firefly algorithm for solving competitive location-design problem: a case study

This paper aims at determining the optimal number of new facilities besides specifying both the optimal location and design level of them under the budget constraint in a competitive environment by a novel hybrid continuous and discrete firefly algorithm. A real-world application of locating new chain stores in the city of Tehran, Iran, is used and the results are analyzed. In addition, several...

متن کامل

Double Fuzzy Implications-Based Restriction Inference Algorithm

The main condition of the differently implicational inferencealgorithm is reconsidered from a contrary direction, which motivatesa new fuzzy inference strategy, called the double fuzzyimplications-based restriction inference algorithm. New restrictioninference principle is proposed, which improves the principle of thefull implication restriction inference algorithm. Furthermore,focusing on the ...

متن کامل

The Nemhauser-Trotter Reduction and Lifted Message Passing for the Weighted CSP

We study two important implications of the constraint composite graph (CCG) associated with the weighted constraint satisfaction problem (WCSP). First, we show that the Nemhauser-Trotter (NT) reduction popularly used for kernelization of the minimum weighted vertex cover (MWVC) problem can also be applied to the CCG of the WCSP. This leads to a polynomial-time preprocessing algorithm that fixes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 348  شماره 

صفحات  -

تاریخ انتشار 2005